• Home   /  
  • Archive by category "1"

Unconfined Compressive Strength Definition Essay

  • 1.

    Abbaszadeh Shahri A (2010) Identification and estimation of nonlinear site effect characteristics in sedimentary basin subjected to earthquake excitations. Ph.D dissertation, Department of Geophysics, Science and research branch, Islamic Azad University, Tehran, IranGoogle Scholar

  • 2.

    Abbaszadeh Shahri A, Larsson S, Johansson F (2015) CPT-SPT correlations using artificial neural network approach—a case study in Sweden. Electron J Geotech Eng (EJGE), 20 (Bund. 28): 13439–13460Google Scholar

  • 3.

    Abbaszadeh Shahri A (2016) An optimized artificial neural network structure to predict clay sensitivity in a high landslide prone area using piezocone penetration test (CPTu) data: a case study in southwest of Sweden. Geotech Geol Eng 34(2):745–758. doi:10.1007/s10706-016-9976-yCrossRefGoogle Scholar

  • 4.

    Alber M, Heiland J (2001) Investigation of a limestone pillar failure: part 1; geology, laboratory testing and numerical modeling. Rock Mech Rock Eng 34(3):167–186CrossRefGoogle Scholar

  • 5.

    Akram M, Bakar MZA (2007) Correlation between uniaxial compressive strength and point load index for salt-range rocks. Pak J Engg Appl Sci 1:1–8Google Scholar

  • 6.

    Azadan P, Ahangari K (2013) Evaluation of the new dynamic needle penetrometer in estimating uniaxial compressive strength of weak rocks. Arab J Geosci. doi:10.1007/s12517-013-0921-6Google Scholar

  • 7.

    Azimian A, Ajalloeian R (2015) Empirical correlation of physical and mechanical properties of marly rocks with P wave velocity. Arab J Geosci 8:2069–2079CrossRefGoogle Scholar

  • 8.

    Azimian A, Ajalloeian R, Fatehi L (2014) An empirical correlation of uniaxial compressive strength with P-wave velocity and point load strength index on marly rocks using statistical method. Geotech Geol Eng 32:205–214CrossRefGoogle Scholar

  • 9.

    Brook N (1890) Size correction for point load testing. Int J Rock Mech Min Sci 17:231–235CrossRefGoogle Scholar

  • 10.

    Cargill JS, Shakoor A (1990) Evaluation of empirical methods for measuring the uniaxial compressive strength of rock. Int J Rock Mech Min Sci Geomech Abstr 27(6):495–503CrossRefGoogle Scholar

  • 11.

    Ceryan N, Okkan U, Kesimal A (2013) Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks. Environ Earth Sci 68:807–819CrossRefGoogle Scholar

  • 12.

    Chau KT, Wong RHC (1996) Uniaxial compressive strength and point load strength. Int J Rock Mech Min Sci 33:183–188CrossRefGoogle Scholar

  • 13.

    Chen FH (1988) Foundations on expansive soils. Developments in soils geotechnical engineering. Elsevier, New YorkGoogle Scholar

  • 14.

    Engin CK, Santi PM (1999) Predicting the unconfined compressive strength of the Breathitt shale using slake durability, Shore hardness and rock structural properties. Int J Rock Mech Min Sci 36:139–153Google Scholar

  • 15.

    Fener M, Kahraman S, Bilgili A, Gunaydin O (2005) A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock Mech Rock Eng 38(4):329–343CrossRefGoogle Scholar

  • 16.

    Ghazviniyan A, fathi A, Rashidi M, Gharacheh M (2005) Application of nondestructive tests in measurements of some physical and mechanical parameters of Zagros marls. In proc. Mining Engineering Conference, Iran, TehranGoogle Scholar

  • 17.

    Gokceoglu C (2002) A fuzzy triangular chart to predict the uniaxial compressive strength of Ankara agglomerates from their petrographic composition. Eng Geol 66:39–51CrossRefGoogle Scholar

  • 18.

    Gunsallus KL, Kulhawy FH (1984) A comparative evaluation of rock strength measures. Int J Rock Mech Min Sci Geomech Abstr 21(5):233–248CrossRefGoogle Scholar

  • 19.

    Hassani FP, Scoble MJ, Whittaker BN (1980) Application of point load index test to strength determination of rock and proposals for new size-correction chart. In: Proceedings of the 21st US symposium on rock mechanics. Rolla, Missouri, 543–564Google Scholar

  • 20.

    Hosseini M, Alipanahi B, Senemari S (2013) Determination of engineering properties of marlstones using puch test. Appl Geol 8(4):309–322Google Scholar

  • 21.

    Jensen LRD, Friis H, Fundal E, Mø ´ller P, Jespersen M (2010) Analysis of limestone micromechanical properties by optical microscopy. Eng Geol 110(3–4):43–50CrossRefGoogle Scholar

  • 22.

    Johnes DE, Holtz WG (1973) Expansive soils: the hidden disaster. ASCE Civil Eng 43(8):49Google Scholar

  • 23.

    Kahraman S, Gunaydin O, Fener M (2005) The effect of porosity on the relation between uniaxial compressive strength and point load index. Int J Rock Mech Min Sci 42:584–589CrossRefGoogle Scholar

  • 24.

    Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38:981–994CrossRefGoogle Scholar

  • 25.

    Kayabali K, Selcuk L (2010) Nail penetration test for determining the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 47:265–271CrossRefGoogle Scholar

  • 26.

    Kilic A, Teymen A (2008) Determination of mechanical properties of rocks using simple methods. Bull Eng Geol Environ 67(2):237–244CrossRefGoogle Scholar

  • 27.

    Mishra DA, Basu A (2013) Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Eng Geol 160:54–68CrossRefGoogle Scholar

  • 28.

    Moradian ZA, Behnia M (2009) Predicting the uniaxial compressive strength and static Young’s modulus of intact sedimentary rocks using the ultrasonic test. Int J Geomech ASCE 9(1):14–19CrossRefGoogle Scholar

  • 29.

    Nazir R, Momeni E, Jahed Armaghani D, Amin MFM (2013) Correlation between unconfined compressive strength and indirect tensile strength of limestone rock samples. Electron J Geotech Eng Vol. 18, Bund. I, 1738–1746Google Scholar

  • 30.

    Nelson JD, Miller DJ (1992) Expansive soils problems and practice in foundation and pavement engineering. Wiley, New YorkGoogle Scholar

  • 31.

    Oakland MW, Lowell CW (1982) Standardized tests for compacted shale highway embankments, Transportation Research Board, National Research Council. Transp Res Rec 873:15–22Google Scholar

  • 32.

    Ozcelik Y, Bayram F, Yasitli NE (2012) Prediction of engineering properties of rocks from microscopic data. Arab J Geosci. doi:10.1007/s12517-012-0625-3Google Scholar

  • 33.

    Ozkan I, Bilim N (2008) A new approach for applying the in situ Schmidt hammer test on a coal face. Int J Rock Mech Min Sci 45:888–898CrossRefGoogle Scholar

  • 34.

    Palchik V (2011) On the ratios between elastic modulus and uniaxial compressive strength of heterogeneous carbonate rocks. Rock Mech Rock Eng 44:121–128CrossRefGoogle Scholar

  • 35.

    Pettijohn FJ (1975) Sedimentary rocks, 3rd edn. Harper and Row, New YorkGoogle Scholar

  • 36.

    Ruwaih IA (1987) Experiences with expansive soils in Saudi Arabia. In: Proceedings of the sixth international conference on expansive soils, New Delhi, India, International Society for Soil Mechanics and Foundation Engineering (ISSMFE), 317–322Google Scholar

  • 37.

    Sanad H, Bader B (1990) Laboratory study on leaching of calcareous soil from Kuwait. J Geotech EngASCE 116(12):1797–1809CrossRefGoogle Scholar

  • 38.

    Shakoor A, Brown CL (1996) Development of a quantitative relationship between unconfined compressive strength and Los Angeles abrasion loss for carbonate rocks. Bull Eng Geol Environ 53:97–103Google Scholar

  • 39.

    Sharma PK, Singh TK (2008) A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ 67(1):17–22CrossRefGoogle Scholar

  • 40.

    Sonmez H, Tuncay E, Gokceoglu C (2004) Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara agglomerate. Int J Rock Mech Min Sci 41(5):717–729CrossRefGoogle Scholar

  • 41.

    Soroush H, Qutob H (2011) Evaluation of rock properties using ultrasonic pulse technique and correlating static to dynamic elastic constants. In: Pro. 2nd South Asain Geoscience Conference and Exhibition, GEOIndia 2011, Greater Noida, New Delhi, IndiaGoogle Scholar

  • 42.

    Vishal V, Pradhan SP, Singh TN (2011) Tensile strength of rock under elevated temperature. Geotech Geol Eng 29:1127–1133CrossRefGoogle Scholar

  • 43.

    Wang RY, Strong D (1996) What data quality means to data consumers. J Manag Inf Syst 12(4):5–34CrossRefGoogle Scholar

  • 44.

    Water and energy resources of Iran (2012) Engineering geology and rock mechanics of dam and power plant of Chamshir. Report 5589601, Ministry of Energy of IranGoogle Scholar

  • 45.

    Yilmaz I (2010) Use of the core strangle test for tensile strength estimation and rock mass classification. Int J Rock Mech Min Sci 47(5):845–850CrossRefGoogle Scholar

  • 46.

    Yong RN, Ouhadi VR, Mohamed AMO (1996) Physico chemical evaluation of failure of stabilized marl soil. In: Proceedings of the 49th Canadian geotechnical conference frontiers in geotechnology 2:769–776Google Scholar

  • 47.

    Yurdakula M, Ceylan H, Akdas H (2011) A predictive model for uniaxial compressive strength of carbonate rocks from Schmidt hardness. The 45th US Rock Mechanics/Geomechanics Symposium, ARMA 11-533, San Francisco, CAGoogle Scholar

  • 48.

    Yurdakula M, Akdas H (2013) Modeling uniaxial compressive strength of building stones using non-destructive test results as neural networks input parameters. Constr Build Mater 47:1010–1019CrossRefGoogle Scholar

  • 49.

    Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol 96:141–158CrossRefGoogle Scholar

  • Please, wait while we are validating your browser

    One thought on “Unconfined Compressive Strength Definition Essay

    Leave a comment

    L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *