• Home   /  
  • Archive by category "1"

Perspective Conique Explication Essay

sensagent

Contenu de sensagent

  • définitions
  • synonymes
  • antonymes
  • encyclopédie

   Publicité ▼

dictionnaire et traducteur pour sites web

Alexandria

Une fenêtre (pop-into) d'information (contenu principal de Sensagent) est invoquée un double-clic sur n'importe quel mot de votre page web. LA fenêtre fournit des explications et des traductions contextuelles, c'est-à-dire sans obliger votre visiteur à quitter votre page web !

Essayer ici, télécharger le code;

Solution commerce électronique

Augmenter le contenu de votre site

Ajouter de nouveaux contenus Add à votre site depuis Sensagent par XML.

Parcourir les produits et les annonces

Obtenir des informations en XML pour filtrer le meilleur contenu.

Indexer des images et définir des méta-données

Fixer la signification de chaque méta-donnée (multilingue).


Renseignements suite à un email de description de votre projet.

Lettris

Lettris est un jeu de lettres gravitationnelles proche de Tetris. Chaque lettre qui apparaît descend ; il faut placer les lettres de telle manière que des mots se forment (gauche, droit, haut et bas) et que de la place soit libérée.

boggle

Il s'agit en 3 minutes de trouver le plus grand nombre de mots possibles de trois lettres et plus dans une grille de 16 lettres. Il est aussi possible de jouer avec la grille de 25 cases. Les lettres doivent être adjacentes et les mots les plus longs sont les meilleurs. Participer au concours et enregistrer votre nom dans la liste de meilleurs joueurs ! Jouer

Dictionnaire de la langue française
Principales Références

La plupart des définitions du français sont proposées par SenseGates et comportent un approfondissement avec Littré et plusieurs auteurs techniques spécialisés.
Le dictionnaire des synonymes est surtout dérivé du dictionnaire intégral (TID).
L'encyclopédie française bénéficie de la licence Wikipedia (GNU).

Traduction

Changer la langue cible pour obtenir des traductions.
Astuce: parcourir les champs sémantiques du dictionnaire analogique en plusieurs langues pour mieux apprendre avec sensagent.

 

3103 visiteurs en ligne

calculé en 0,187s

This article needs attention from an expert in Mathematics. The specific problem is: There may be logic or math errors, complicated by the fact that this article was translated from a German original.See the talk page for details. WikiProject Mathematics may be able to help recruit an expert.(May 2017)

Axonometry is a graphical procedure belonging to descriptive geometry that generates a planar image of a three-dimensional object. The term "axonometry" means "to measure along axes", and indicates that the dimensions and scaling of the coordinate axes play a crucial role. The result of an axonometric procedure is a uniformly-scaled parallel projection of the object. In general, the resulting parallel projection is oblique (the rays are not perpendicular to the image plane); but in special cases the result is orthographic (the rays are perpendicular to the image plane), which in this context is called an orthogonal axonometry.

In technical drawing and in architecture, axonometric perspective is a form of two-dimensional representation of three-dimensional objects whose goal is to preserve the impression of volume or of relief. Sometimes also called rapid perspective or artificial perspective, it differs from conical perspective and does not represent what the eye actually sees: in particuliar parallel lines remain parallel and distant objects are not reduced in size. It can be considered a conical perspective conique whose center has been pushed out to infinity, ie very far from the object observed.

The term axonometry is used both for the graphical procedure described below, as well as the image produced by this procedure.

Axonometry should not be confused with axonometric projection, which in English literature usually refers to orthogonal axonometry.

Principle of axonometry[edit]

Pohlke's theorem is the basis for the following procedure to construct a scaled parallel projection of a three-dimensional object:

  1. Select projections of the coordinate axes, such that all three coordinate axes are not collapsed to a single point or line. Usually the z-axis is vertical.
  2. Select for these projections the foreshortenings, , and , where .
  3. The projection of a point is determined in three steps (the result is independent of the order of these steps):
  4. Mark the final position as point .

In order to obtain undistorted results, select the projections of the axes and foreshortenings carefully (see below). In order to produce an orthographic projection, only the projections of the coordinate axes are freely selected; the foreshortenings are fixed (see de:orthogonale Axonometrie).

The choice of the images of the axes and the forshortenings[edit]

Notation:

The angles can be chosen so that
The forshortenings:

Only for suitable choices of angles and forshortenings does one get undistorted images. The next diagram shows the images of the unit cube for various angles and forshortenings and gives some hints for how to make these personal choices.

In order to keep the drawing simple, one should choose simple forshortenings, for example or .

If two forshortenings are equal, the projection is called dimetric.
If the three forshortenings are equal, the projection is called isometric.
If all forshortenings are different, the projection is called trimetric.

The parameters in the diagram at right (e.g. of the house drawn on graph paper) are: Hence it is a dimetric axonometry. The image plane is parallel to the y-z-plane and any planar figure parallel to the y-z-plane appears in its true shape.

Special axonometries[edit]

Engineer projection[edit]

In this case

  • the forshortenings are: (dimetric axonometry) and
  • the angles between the axes are:

These angles are marked on many German set squares.

Advantages of an engineer projection:

  • simple forshortenings,
  • a uniformly scaled orthographic projection with scaling factor 1.06,
  • the contour of a sphere is a circle (in general, an ellipse) .

For more details: see de:Axonometrie.

Cavalier perspective, cabinet perspective[edit]

  • image plane parallel to y-z-plane.

In the literature the terms "cavalier perspective" and "cabinet perspective" are not uniformly defined. The above definition is the most general one. Often, further restrictions are applied. For example:

cabinet perspective: additionally choose and (dimetric),
cavalier perspective: additionally choose and (isometric).

Birds eye view, military projection[edit]

  • image plane parallel to x-y-plane.
military projection: additionally choose (isometric).

Such axonometries are often used for city maps, in order to keep horizontal figures undistorted.

Isometric axonometry[edit]

(Not to be confused with an isometry between metric spaces.)

For an isometric axonometry all forshortenings are equal. The angles can be chosen arbitrarily, but a common choice is .

For the standard isometry or just isometry one chooses:

  • (all axes undistorted)

The advantage of a standard isometry:

  • the coordinates can be taken unchanged,
  • the image is a scaled orthographic projection with scale factor . Hence the image has a good impression and the contour of a sphere is a circle.
  • Some computer graphic systems (for example, xfig) provide a suitable raster (see diagram) as support.

In order to prevent scaling, one can choose the unhandy forshortenings

  • (instead of 1)

and the image is an (unscaled) orthographic projection.

Circles in axonometry[edit]

A parallel projection of a circle is in general an ellipse. An important special case occurs, if the circle's plane is parallel to the image plane&endash;the image of the circle is then a congruent circle. In the diagram, the circle contained in the front face is undistorted. If the image of a circle is an ellipse, one can map four points on orthogonal diameters and the surrounding square of tangents and in the image parallelogram fill-in an ellipse by hand. A better, but more time consuming method consists of drawing the images of two perpendicular diameters of the circle, which are conjugate diameters of the image ellipse, determining the axes of the ellipse with Rytz's construction and drawing the ellipse.

  • Cavalier perspective: circles

  • Military projection: sphere

Spheres in axonometry[edit]

In a general axonometry of a sphere the image contour is an ellipse. The contour of a sphere is a circle only in an orthogonal axonometry. But, as the engineer projection and the standard isometry are scaled orthographic projections, the contour of a sphere is a circle in these cases, as well. As the diagram shows, an ellipse as the contour of a sphere might be confusing, so, if a sphere is part of an object to be mapped, one should choose an orthogonal axonometry or an engineer projection or a standard isometry.

References[edit]

  • Graf, Ulrich; Barner, Martin (1961). Darstellende Geometrie. Heidelberg: Quelle & Meyer. ISBN 3-494-00488-9. 
  • Fucke, Kirch Nickel (1998). Darstellende Geometrie. Leipzig: Fachbuch-Verlag. ISBN 3-446-00778-4. 
  • Leopold, Cornelie (2005). Geometrische Grundlagen der Architekturdarstellung. Stuttgart: Verlag W. Kohlhammer. ISBN 3-17-018489-X. 
  • Brailov, Aleksandr Yurievich (2016). Engineering Graphics: Theoretical Foundations of Engineering Geometry for Design. Springer. ISBN 978-3-319-29717-0. 
  • Stärk, Roland (1978). Darstellende Geometrie. Schöningh. ISBN 3-506-37443-5. 
Notes

External links[edit]

Various axonometric images of a unit cube. (The image plane is parallel to the y-z-plane.)
The left and the far right images look more like prolonged cuboids instead of a cube.

Axonometry (cavalier perspective) of a house on checked pattern paper.

Parameters of special axonometries.

standard isometry: cube, cuboid, house and sphere

One thought on “Perspective Conique Explication Essay

Leave a comment

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *